A Multiscale Wavelet-Inspired Scheme for Nonlinear Diffusion

نویسندگان

  • Gerlind Plonka-Hoch
  • Gabriele Steidl
چکیده

Nonlinear diffusion filtering and wavelet shrinkage are two successfully applied methods for discontinuity preserving denoising of signals and images. Recently, relations between both methods have been established taking into account wavelet shrinkage at one scale. In this paper, we propose a new explicit scheme for nonlinear diffusion which directly incorporates ideas from multiscale Haar wavelet shrinkage. We prove that our scheme permits larger time steps while preserving convergence to the mean signal value. Numerical examples demonstrate the behavior of our scheme for two and three scales. Mathematics Subject Classification 2000. 65T60, 65M06, 65M12, 94A12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correspondences between Wavelet Shrinkage and Nonlinear Diffusion

We study the connections between discrete one-dimensional schemes for nonlinear diffusion and shift-invariant Haar wavelet shrinkage. We show that one step of (stabilised) explicit discretisation of nonlinear diffusion can be expressed in terms of wavelet shrinkage on a single spatial level. This equivalence allows a fruitful exchange of ideas between the two fields. In this paper we derive new...

متن کامل

Integrodifferential Equations for Continuous Multiscale Wavelet Shrinkage

The relations between wavelet shrinkage and nonlinear diffusion for discontinuity-preserving signal denoising are fairly well-understood for singlescale wavelet shrinkage, but not for the practically relevant multiscale case. In this paper we show that 1-D multiscale continuous wavelet shrinkage can be linked to novel integrodifferential equations. They differ from nonlinear diffusion filtering...

متن کامل

Diffusion Filters and Wavelets: What Can They Learn from Each Other?

Nonlinear diffusion filtering and wavelet shrinkage are two methods that serve the same purpose, namely discontinuity-preserving denoising. In this chapter we give a survey on relations between both paradigms when space-discrete or fully discrete versions of nonlinear diffusion filters are considered. For the case of space-discrete diffusion, we show equivalence between soft Haar wavelet shrink...

متن کامل

A Wavelet Regularization for Nonlinear Diffusion Equations

We are concerned with a wavelet–based treatment of nonlinear diffusion equations in the context of image processing. In particular, we focus on the Perona– Malik model as a suitable instrument for smoothing images while preserving edges. We are not exploring a complete new method of solving the Perona– Malik equation but, inspired by Weickert et.al., we develop a new variant, based on wavelet t...

متن کامل

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJWMIP

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2006